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Flow in a deep turbulent boundary layer over a 
surface distorted by water waves 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 31 December 1971) 

Linearized equations for the mean flow and for the turbulent stresses over 
sinusoidal, travelling surface waves are derived using assumptions similar to 
those used by Bradshaw, Ferriss & Atwell (1967) to compute boundary-layer 
development. With the assumptions, the effects on the local turbulent stresses 
of advection, vertical transport, generation and dissipation of turbulent energy 
can be assessed, and solutions of the equations are expected to resemble closely 
real flows with the same conditions. The calculated distributions of surface 
pressure indicate rates of wave growth (expressed as fractional energy gain 
during a radian advance of phase) of about 15(p,/pw)(~,/c2), where 70 is the 
surface stress, c,, the phase velocity, and pa and pw the densities of air and water, 
unless the wind velocity at height A/27r is less than the phase velocity. The rates 
are considerably less than those measured by Snyder & Cox (1966), by Barnett & 
Wilkerson (1967) and by Dobson (1971), and arguments are presented to show 
that the linear approximation fails for wave slopes of order 0.1. 

1. Introduction 
It is only recently that observations of flow velocities and pressures over water 

waves have been made in sufficient detail to test the several theories that describe 
their generation. For waves of such small amplitude that the flow may be de- 
scribed by linearized equations, the theory of resonant growth excited by the 
travelling pressure field of the atmospheric turbulent boundary layer (Phillips 
1957) appears to describe the initial growth before the surface deformation has 
an appreciable effect on the air flow. Then, further growth may be expected 
through pressure fields induced by the surface deformation, and several attempts 
to find the exponential rate of growth during the second phase have been pre- 
sented, starting with the work of Miles (1957). Miles assumed that the undis- 
turbed flow was that in a constant-stress boundary layer and that the Reynolds 
stresses were not changed by the flow perturbations. The problem is then one 
of the instability of inviacid flow with the ‘turbulent’ distribution of mean 
velocity, and the solution proceeds on well-known lines, In  this and subsequent 
theories of the same kind, considerable importance is attached to flow near the 
critical layer, a t  the height where the wind velocity equals the phase velocity of 
the waves. Here, the fluid moves with the waves and is always exposed to the 
same increment of distortion rate. It follows that the Reynolds stresses in this 
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region have responded to the wave distortion and are not those of the undisturbed 
fl0W. 

To include in the theory the effects of the changes of Reynolds stress, it is 
necessary to make some assumptions about the relation between the mean flow 
and the turbulent motion, and present knowledge suggests that a good descrip- 
tion may be obtained by assuming similarity of the turbulent motion and by 
use of the equation for the turbulent kinetic energy. The assumptions to be used 
are not essentially different from those used by Bradshaw et al. (1967) for the 
calculation of boundary-layer development. They are (i) that the ratio of 
Reynolds stress to total turbulent intensity is everywhere the same, (ii) that 
the local rate of energy dissipation depends only on the Reynolds stress and on 
a dissipation length parameter that is proportional to height above the wave 
surface, (iii) that turbulent kinetic energy is diffused vertically a t  a rate propor- 
tional to its gradient and (iv) that the direction of horizontal Reynolds stress 
is pzrallel to the direction of velocity shear. 

2. Equations for flow over waves of small amplitude 
We consider surface waves propagating at  an angle 6 to the Ox axis with phase 

velocity co, where the horizontal co-ordinates x, y are chosen so that Ox is in 
the direction of the undisturbed mean flow U ( z )  and move relative to the water 
with velocity co/cos6 in the Ox direction. In  these co-ordinates, the surface 
displacements are independent of time and given by 

h = h, exp i(mx + ny) ,  (2’1) 

where m = kcos8, n = ksin8 and k is the wavenumber of the surface wave. 
In  this co-ordinate system, mean velocities, Reynolds stresses and mean pressures 
are also independent of time and, for small amplitudes, vary with the same 
period its the surface displacement, e.g. u = uo exp i(mx + ny) .  Writing the 
deviation of mean velocity from the undisturbed value U(x) as (u ,v ,w) ,  the 
Reynoldsequations forthe meanvelocity become, to first orderin the fluctuations, 

( 2 . 2 )  

where p is the pressure fluctuation and rX2, rY,, etc., are the fluctuations of the 
Reynolds stresses. In  terms of P = p - T , ~ ,  the equations may be mitten as 

dr,,ldz = imp + i m U u  + w dU1d.z + im(r,, - rxz) + inrZy, 

dr,,ldx = inP + imUv + in(r2, - ryy) + irnrxy, (2.3) 

(2.4) 

dP/dz  = - imUw + imr,, + inrya, 

and the condition of incompressibility leads to 

dwldx = - imu - inv. 
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The next stage is to relate the Reynolds stresses to the mean flow. In  the 
undisturbed flow, the Reynolds stress tensor is symmetrical about the direction 
of flow, so that 7xg = 0. With a velocity shear in the Oy direction, it is expected 
that the direction of symmetry, that is the direction of the shear stress, will 
change towards the direction of the vertical gradient of horizontal velocity. The 
rapidity of the adjustment is dependent on the ‘relaxation’ time of the turbulent 
flow which is of the order of the reciprocal of the rate of shear, i / (dU/dx) ,  and it 
is likely that the direction of the stress q5 is described by an equation of the form 

where q50 is the asymptotic value, given by 

For small periodic variations, 

Naturally, C, enters only into the calculations for oblique waves. 
In  addition to the change in horizontal direction of the stress tensor, the ratios 

of the components may change in the rotated axes, and the turbulent intensity 
will change over a wave period. The stress ratios in fluid subjected to simple plane 
hearing appear to be insensitive to increase in the rate of shear, but other kinds 
of velocity gradient added to a basic plane shearing may cause first-order changes 
in the ratios. Calculations making the assumption of rapid distortion give a good 
account of the turbulent structure in ordinary shear flows (Townsend 1970), 
and table 1 gives the increments in the stress components induced by (a)  unit 
pIane shear in the Ox direction, (b)  unit irrotational distortion with the principal 
positive rate of strain along Ox and ( c )  unit plane shear in the Ox direction, 
calculated with that assumption for various initial total strains. The calculations 
refer to the initial elastic response and might be directly applicable only in the 
outer part of the flow, but the characteristic property of increased ‘stiffness’ 
to a changed type of shear may well imply that turbulent fluid responds to 
additional velocity gradients in a strongly anisotropic way. The calculations do 
not support the use of an isotropic model for the visco-elastic behaviour of 
turbulent fluid. 

If the only changes in the stress tensor are the rotation about the Ox direction 
and a change in the total intensity, = ut2 + v‘2 + w’2, the fractional changes in 
the total normal stresses and in the total shear stress equal the fractional change 
in total intensity, and the fractional changes in 7gz and 7xu are equal to (p. If 
the stresses in the undisturbed flow are written as 

- - -  

- 
rgz = -agzq2, etc., 

the result is that the stress changes are 

46 
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Initial total shear ratio 

Increment Component 

Ox shear 7,X 

7x2 

7 2 2  

T,z 

7 2 2  

7 , 2  

7 z z  

Irrotational 7 x x  

Oz shear 7,X 

1.0 
- 0.57 

0.39 
0.16 

1.47 
0.02 

- 0.73 

0.23 
0.46 

- 0.53 

2.0 

- 1.11 
0.32 
0.14 

3.28 
0.07 

- 0.68 

0.54 
0.65 

- 0.85 

3.0 

- 1.63 
0.25 
0.16 

6.03 
0.08 

- 0.64 

1-02 
0.88 

- 0.93 

4.0 

- 1.95 
0.13 

- 0.06 

9.54 
0.42 

- 0.74 

1.68 
1.04 

- 1.05 

Note that the incremental strain tensors are (: i) for Ox shear, (' 0 - 1  ") for irrotational shear, (i :) for Oz shear. 

TABLE 1. Reynolds stress components induced by incremental 
strains of sheared turbulence 

So the changes in Reynolds stress are described by the angle $ and by (3)') 
the change in total intensity. The change in $ is given by equation (2.5). 

The change in total intensity is found from the equation for the turbulent 
kinetic energy. Omitting second-order terms, it becomes 

a(@)/ a I - dU d u  + - ($w + iq2w') = r,, - + 7 - - 
dz Odz "' U -  

ax ax (2.7) 

where E' is the change in dissipation rate caused by the waves. To use it as an 
equation for the stresses, assumptions must be made about the diffusion term 
and the dissipation term. The vertical flux of energy will be assumed proportional 
to the gradient with a diffusion coefficient that is a constant fraction of the eddy 
viscosity for the undisturbed flow, i.e. Krtz, where ro is the constant shear stress. 
Then the diffusive flux is 

- -  
+ i q2wi  = - D K ~  0 z(d.r,,/d~)/2%z. (2.8) 

Next, the total dissipation is assumed to be given by 

= (q"lL,, (2.9) 

where L, is proportional to 'height above the wave surface'. Physically, the 
variation must arise from the constriction of eddy size by the presence of an 
impermeable boundary and, very close to the surface, the length is certainly 
proportional to z-h. At heights comparable with or greater than the wave- 
length, the constriction is by a considerable area of surface and L, will be more 
nearly proportional to height above the average position of the surface. It 
appears reasonable to represent the behaviour by assuming that 

(2.10) L, = (K/u&) (x - h e-kz), 
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where the factor is chosen to allow energy balance in the undisturbed flow.? 
Then the change in dissipation rate is, to first order, 

(2.11) 

and the energy equation becomes 

The equations (2.3)-(2.6) and (2.12) are a set of inhomogeneouslinear equations 
for rZ2, ryz, P ,  u, v and w in an undisturbed flow specified by U ( z ) .  If the effective 
roughness length of the surface is zo, the velocity distribution is 

U = (r i /K)  log ( x l x , )  - kco/m. (2.13) 

At this stage, it is convenient to describe the flow in variables made non- 
dimensional by use of a velocity scale ri and a length scale k-l. In  the non- 
dimensional representation, the flow depends on the non-dimensional parameters 
R = -log (kxo), C = co/ri and 13, and is linearly dependent on the maximum 
slope kh, of the wave surface. 

3. Boundary conditions of the flow 
For numerical solution of the flow equations it is necessary to set boundary 

conditions at the inner and outer limits of the integration. The outer conditions 
depend on the requirement that the flow disturbance becomes small for large 
values of the non-dimensional height. There the changes in Reynolds stress have 
a negligible effect on the flow and the non-dimensional equations reduce to 

0 = imp + imUu + w d U/dx,) 

0 = i n P f i m U v ,  

dP/dz = -imUw, 

dwldz = -imu-inv. 

After elimination of U ,  v and P ,  these yield 

d2Wld22 = ( 1  + Ul'lU) w 

(where primes indicate differentiation with respect to z) ,  and, if 

U/U" = z2[log(z/zo) - KCfm] 

is large, the solution of (3 .2 )  that becomes small for large z is very nearly 

w = u?op,-". 

P = imU[i + U ' / U ]  w, 
u = - im[ l  - (ne/m2) U' lU]  w, 

Then, from (3 .1) ,  

'0 = - i ? Z [ l i -  U'lU] w, 

(3 .1 )  

(3.3) 

where the (square) bracketed expressions are nearly one. 

t If the flow were irrotational, the factor could be justified. 

46-2 
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Equations (3.4) provide three conditions that must be satisfied a t  the outer 
boundary, and three inner conditions are necessary to determine a solution. The 
energy equation (2.12) is applicable only within the turbulent flow and the 
integration must not be carried to values of z that lie within the viscous layer of 
the flow. In  general, the viscous layer is thin and the integration can extend so 
close to the surface that the velocity distribution is nearly that of a constant- 
stress equilibrium layer. Allowing for the orbital velocity of the wave motion, 
the velocities are given by the logarithmic expressions 

3 u + u = 7.. K log rTh) + rnCh - C/m, 

(3.5) 

where the stresses are values at  the surface. To first order in h, the fluctuations 

where (rzJ0 and (ryJ0 are the stress fluctuations at  the surface. Using the con- 
tinuity equation and assuming validity of the logarithmic profiles, it may be 
shown that 

w = i(mU - Cz)  h - (imz/BK) (log z/zo - 1) ( T ~ , ) ~  

- (inz/K) (lOgX/zo- 1 )  (rys)0. (3.7) 

Although the inner boundary may be very close to the surface, it is not 
accurate to put the surface stresses equal to the Reynolds stresses at the inner 
boundary. The difference is found by the equation of mean flow through the 
equilibrium layer, i.e. 

or, in terms of the fluctuations, 

z z 
r,, - (T,,)~ = imPz + - (3m + Kc,) log - + 4m + Kc, 

2K2 z0 

inz 

z 
2K2 

inc, z z 

The conditions expressed by (3.6), (3.7) and (3.9) are sufficient t o  make the 
problem of integration determinate. The procedure has been to integrate the 
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flow equations inwards from a sufficiently distant outer boundary with trial 
values of w, rxz and rv2, and values of P, u, o given by equations (3.4), and then to 
add to this particular solution a linear combination of solutions of the homo- 
geneous equations (i.e. omitting the term -e-."h/Kz2 in ( 2 . 1 2 ) )  chosen so that 
the composite solution satisfies the inner conditions as well as the outer ones. 
By varying the inner and outer limits of the integration (usually by factors of 
two), it was possible to verify that their choice had little effect on the solution. 
For large positive values of c,/U(k-l) ,  the outer limit had to be increased, but 
the normal limits of kz were 3 and e-4 = 0.0183. 

4. Results of the calculations 
For completeness, the flow equations in $ 2  include all components of the 

Reynolds stress, but trials have shown that the calculated solutions are not 
significantly different if stresses other than .r,,and T ~ ,  are ignored. All the following 
results have been calculated on this basis. Besides the K&rm&n constant K = 0.41, 
the equations contain three constants characteristic of turbulent wall flow. The 
first and most important is the stress-intensity ratio azz = -T,/~;Z (a, in the notation 
of Bradshaw, Ferriss & Atwell), and it is assumed that axG = 0.15. The second 
constant describes the magnitude of vertical diffusion of turbulent energy by 
an eddy diffusivity (equation (2.8)), and it occurs in the combination DK/2ux,. 
Using an eddy diffusivity in the energy equation for a zero-stress equilibrium 
layer (Townsend 1961), it  may be shown that dU/dx  = d / K O z ,  where 

KO = K / ( l  - B )  and B = $K2D/ax,. 

The available evidence suggests that B N 0.2, indicating that DK/2ax, N 0.32. 
Most of the results presented are for DK/2axz = 0.3, but trials have shown that 
surface values of pressure are almost independent of the constant over the range 
0.1-0-5. The third constant allows for lag in the adjustment of the principal 
axes of the Reynolds stress tensor to the changing direction of shear (equation 
( 2 . 5 ) )  and, in the absence of any measurements, it  has been set equal to one. 

For the problem of wave generation, the important quantities are the ampli- 
tudes of the pressure and shear stress fluctuations over the wave surface. For 
example, the horizontal stress exerted on the water by the pressure field is 

where kh, is the maximum wave slope. Surface pressures and stresses are given 
as non-dimensional coefficients in table 2 for the wind direction normal to the 
wave fronts. Some additional entries show the insensitivity of surface values to 
the magnitude of the diffusion parameter or to the nature of the surface roughness. 
From figure 1 ,  it can be seen that Pi, the imaginary component of the pressure 
amplitude, increases with c,/U(k-l)  = KC/R to a peak value of about 22kh,r, 
for c,/U(k-l) N 0-8, and then decreases rapidly to small negative values. The 
phase of the pressure fluctuation (relative to the wave height) is nearly 180' 
except for co/U(k-l)  = 0.6-0.8 when it is nearer to 90". The amplitudes of stress 
variation are in the range 2-5kh,~,, and the phase increases from about 30" to 
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R 

8 
8 

8 

8 

8 

8 

8 

8 

8 

8 

8 
8 

10 

10 
10 

10 
10 

10 
10 

10 

10 
12 
12 
12 
12 
12 
12 
12 
12 

KC/R 

0 
0.205 

0.375 

0.41 

0.512 

0.615 

0.718 

0.82 

0.922 

1.025 

1.281 
1.538 
0.164 
0.205 
0.328 

0.41 
0.492 

0.615 
0.656 

0.82 

0-984 
0.171 
0.205 
0.342 
0.41 
0.512 
0.684 
0-854 
1.025 

P, 
- 262.0 
- 145.4 

( -  148.1 
- 98.65 

( - 98.65 
- 59.85 

( -  59.87 
- 29.58 

( - 29.59 
- 9.54 

( - 9.44 
- 2.06 

( -  1.67 
- 6.44 

( - 6.09 
- 14.28 

( -  15.35 
- 5.16 

( -  2.33 
- 64.04 
- 169.8 
- 287.6 
- 253.8 
- 164.2 

( -  1666 
- 114.0 
- 71.86 

( -  73.6 
- 25.22 
- 15.05 

( -  14.22 
- 5.16 

( - 4.75 
( - 2.52 
( -  8.97 
- 434.4 
- 393.8 
- 247.4 
- 186.1 
- 108'6 
- 22.28 
- 6.52 
- 8.37 

P6 

11.02 
10.37 
0.0 

10.67 
11-16 
11-84 
11.83 
14.40 
14.32 
18.41 
18.25 
21.54 
21.51 
18.42 
19.03 
2.11 
2.79 

- 1.12 
- 2.00 
- 1.29 
- 2.60 

8.73 
8.64 
8.88 
9.17 
9.68 

11-43 
10.36 
16.89 
19.36 
17.03 
21.40 
21.80 
23.30 
- 8.88 

7.23 
7.44 
7.13 
7.54 
9.31 

18.85 
21.01 

1.59 

7r 

4.28 
2.99 
2.91 
2.36 
2.40 
1.70 
1.71 
0.94 
0.96 

- 0.04 
0 

- 1.24 
- 1.19 
- 2.37 
- 2.35 
- 3.17 
- 3.24 
- 3.31 
- 3.31 
- 4-99 
- 6.85 

2.96 
2.73 
2.03 
2.64 
1-57 
1.07 
1.42 
0.13 

- 0.29 
-0.17 
-2.11 
- 2.08 
- 2.67 
- 3.95 

2.70 
2.60 
1.78 
1.42 
0.88 

- 0.37 
- 2.19 
- 2.85 

Ti 

1.69 
1.54 

- 0.93) 
1.58 
1.59) 
1-71 
1.68) 
1.96 
1.93) 
2.23 
2.20) 
2.28 
2.28) 
1.98 
2-03) 
1.37 
1.34) 
1.38 
1-34) 
1.79 
2.29 
1.10 
1.09 
1.11 
1*51)* 
1.19 
1-34 
1-70)* 
1.68 
1.78 
2-34)* 
1-53 
1.57) 
2.47) * 
1.43)* 
0.79 
0.86 
0.79 
0.83 
0.97 
1-45 
1.16 
0.65 

9 , P  
- 

0.489 

- 

0.469 

- 

0.326 

- 

0.303 

- 

0.534 

- 
- 

0.495 
- 
- 

0.469 
- 

- 
0.355 

0.288 

- 

0.497 
- 

0.495 
- 

0.486 
0.388 
0.298 
0.470 

Note that simple brackets indicate results for a diffusion factor DK/(2a,,) of 0.1 rather 
than 0.3. Brackets with an asterisk indicate results for roughness length proportional to 
local shear stress. 

TABLE 2. Non-dimensional amplitudes of pressure and stress 
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FIGURE 1. Amplitudes and phases of the surface pressure variations on 8 wave travelling 
normally to the wind direction. P, and Pi are the real and imaginary parts of the (non- 
dimensional) complex pressure variation. Note that the scales for P, and Pi are different. 
0,  R = 8; 0, R = 10; X ,  R = 12. 

near 150" as co/U(k-l)  changes from 0 to 1.5. This means that the pressure maxi- 
mum and the stress maximum both occur on the backward slope of the wave 
but that the stress maximum is usually nearer the wave crest than the pressure 
maximum, especially for smaller c,/U(k-l) .  

Table 3 and figure 2 show surface pressures and stresses for a wind direction 
at  an angle to the wave normal. Their magnitudes are approximately the same 
as for zero angle if the wind velocity resolved normal to the wave front is used as 
a scale, i.e. P / ( w ~ U ( k - l ) ) ~  is dependent mostly on the value of co/U(k-l)m and 
hardly a t  all on m = cos 8 (8 is the angle between the wind and the wave normal). 
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R 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

rn 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

KClrnR 
0-256 
0.320 
0-512 
0.641 
0.770 
1-025 
0.410 
0-488 
0.820 
1.230 
1.640 
0.102 
0.205 
0.410 
0.615 
0-820 
1.025 
0.164 
0.328 
0.492 
0.656 
0.985 
0-171 
0.342 
0.512 
0.683 
0-853 
0-137 
0-274 
0.410 
0.547 
0.684 
0.820 

P - 
Real 

- 77.64 
- 60.17 
- 19.48 
- 4.05 
- 1.16 
- 4.65 
- 15.68 
- 8.27 
- 0.63 
- 12.51 
- 56.19 

-218.6 
- 162.4 
- 73.3 
- 16.59 
- 2.60 
- 3-93 
- 72.0 
- 41.42 
- 18.67 
- 4-23 
- 3.34 

- 277.8 
- 158.5 
- 70.0 
- 14.56 
- 3.48 

- 119.3 
- 79.22 
- 46.86 
- 22'37 
- 6.14 

0.02 

Imag. 

6-89 
7.12 
8.81 

11.41 
13.17 
- 3-54 

3.01 
3.17 
4.41 

- 0.50 
- 1-19 

5.91 
5.75 
6.33 

10.06 
13.46 

2.67 
2.61 
2.87 
3-76 

- 1.02 
4.75 
4.80 
6.02 

11.09 
13.22 
2.39 
2-21 
2.25 
2.64 
3.69 
5.44 

- 2.52 

Real 

1.95 
1.73 
0.91 

- 0.03 
- 1.46 
- 2.00 

1.10 
0.95 

- 1.16 
- 0.55 
- 1.52 

2.25 
1.90 
1.23 
0.33 

- 1.58 
- 1.82 

1.13 
0.98 
0.82 
0.48 

1-83 
1.29 
0-76 

- 0.28 

- 0-04 
- 1.57 

0.99 
0.86 
0.75 
0.64 
0.40 

- 0.63 

Imag. 

1.02 
1.07 
1-48 
1.88 
1.57 
0.88 
0.67 
0.88 
0-85 
0-72 
0-79 
0.70 
0-69 
0.82 
1.32 
1.01 
0.59 
0.22 
0.34 
0-53 
0.97 
0.45 
0.49 
0.51 
0-68 
1.17 
0-71 
0-16 
0.19 
0-25 
0.41 
0-76 
1-02 

Real 

0.50 
0.37 
0.04 

- 0.05 
- 0.15 
- 0.90 

0.14 
0.14 

- 0.21 
- 1.10 
- 1-75 

0.74 
0.56 
0.21 

- 0.09 
- 0.32 
- 0.79 

0.51 
0.27 
0.04 

- 0.15 
- 0.71 

0.58 
0.32 
0.05 

- 0.17 
- 0.41 

0.52 
0.34 
0.16 

- 0.02 
- 0.18 
-0.19 

TABLE 3. Pressure and stress amplitudes for oblique incidence 

Imag. 

0-30 
0.26 
0.18 
0.11 
0.48 
0.24 
0.18 
0.18 
0.42 
0.36 
0.38 
0.23 
0.21 
0.18 
0.10 
0.42 
0.15 
0.19 
0-16 
0.12 
0.06 
0.10 
0.15 
0.14 
0.13 
0-07 
0.34 
0.14 
0.13 
0.12 
0-10 
0.05 
0.10 

Profiles of pressure, stress and velocity amplitudes were obtained in the course 
of the calculations, and sample profiles are shown in figures 3-5. Over the inter- 
esting range of c0/U(k1),  0 to 0.8, the phase of the pressure fluctuation and the 
vertical component of velocity hardly change through the layer of modified flow, 
but the profiles of Reynolds stress show the expected 'diffusive' wave with at 
least two phase reversals. As a rule, the stress amplitude a t  the height of phase 
reversal relative to the surface stress is similar to the amplitude at the surface, 
and, in typical conditions (say for R = 10, C = 10) the difference of stress may 
be near 4kh07,. For a wave slope of 0.1, the stress at the height of phase reversal 
is calculated as 50 % greater than the surface value near minimum surface stress, 
and it is likely that the flow may not be accurately described by the linearized 
equations. 
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FIGURE 2. Imaginary parts of the complex pressure variations on waves travelling a t  an 
angle t o  the wind direction. 0, R = 8 ;  0, R = 10; X ,  R = 12. Plain points are for 
cos 0 = 0.8, tailed points for cos 0 = 0.5. Note the scale factors of cos 0 and cos2 0 on 
the abscissae and ordinates. 
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FIGTJRE 3. Variation of pressure amplitude with distance from surface for R = 10 and 
C = 4, 10, 16. The moduli are plotted. The phases remain nearly constant, i.e. for C = 4, 
y5 = 0*99On, for C = 10, $ = 0.974n and for C = 16, $b = 0 . 7 1 0 ~ - 0 . 7 1 4 ~ .  0,  C = 4 
( x 0.4) ; -, C =  1 0 ; - - - , C =  1 6 ( ~ 4 ) .  

A quantity of considerable interest is the local wave stress, that is the rate of 
downward transfer of momentum by the periodic motion induced by the waves. 
Since the horizontal flow velocity averaged over horizontal planes is unchanging, 
the total vertical flux of momentum is the same at  all heights and, accordingly, 
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FIGURE 4. Variation of Reynolds stress amplitude with distance from surface for R = 10 
and (a)  C = 4, ( b )  C = 10 and (c) 0 = 16. Moduli (solid lines) and phases (broken lines) are 
plotted. Arrows indicate positions of phase reversal relative to phase of wall stress variation. 
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FIGURE 5. Variation of amplitude of vertical velocity component with distance from surface 
for R = 10 and (a) C = 4, (b) C = 10 and (c)  C = 16. Moduli (solid lines) and phases 
(broken lines) are plotted. 
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where 7, is the Reynolds stress far above the waves, ro is the horizontally 
averaged Reynolds stress and rw is the wave stress, given by 

Tw = ~(kho)2T,(uw*+u*w), (4.3)t 

where u and w are the non-dimensional complex amplitudes of the velocity 
fluctuations. Some profiles of the non-dimensional wave stress &(uw* + u*w) are 
shown in figure 6. They indicate that the wave stress becomes negative very 
close to the surface and attains a large negative value near the position where the 
stress fluctuations have reversed in phase. Above it continues to oscillate with 
diminishing amplitude. The magnitude of the variations is such that the,basic 
stress distribution will be considerably changed from uniformity if the wave 
slope exceeds 0.1, 

5. Discussion 
The calculated values of the quadrature component of the pressure variation, 

which determines the energy transfer from the wind to the waves, are similar 
in magnitude to those given by Miles (1959)) who neglected Reynolds stresses 
entirely. For example, the maximum value of pi, nearly 22 in figure 1, can be 
compared with maximum values near 20 for comparable values of Reynolds 
number, i.e. of l/(kzo).$. The main difference is that the maximum is more pro- 
nounced in figure 1 of this paper than it is in figure 4 of Miles's paper. It is sur- 
prising that the differences are not larger since the critical layer where wind and 
phase velocities are equal is of central importance in stability theory while it 
is merely an unimportant part of an equilibrium layer if turbulent stresses are 
included through the turbulent energy equation. The reason is that the turbulent 
flow near the critical layer is not subjected to periodic changes in the rate of 
shear, and it is able to develop an equilibrium structure appropriate to the local 
rate of shear. Indeed, for many of the calculations, the critical height lay outside 
the range of numerical integration and within the region described by the inner 
boundary conditions (3.6) and (3 .7) .  

Although the attention paid to the turbulent motion makes for a more realistic 
account of the flow, the linearized theory is not able to account for the considerable 
discrepancy between calculated surface pressures and those measured in recent 
field studies by Snyder & Cox (1966)s and by Dobson (1971). It is possible that 
some allowance for the changes in stress ratios caused by the wave flow might 
improve the agreement but the extremely small effect produced if normal stresses 
are included in the calculation makes this doubtful. Recently, Davis (1972) has 
concluded that the visco-elastic response of turbulent fluid to changes of strain 
may be sufficient to account for the discrepancy between the observations and 
predictions assuming either zero viscosity or an eddy viscosity (Hussain & 

t Note that u* is the complex conjugate of the velocity uo exp i(mz+ny),  not the friction 
velocity. 

$ In Miles's notation, P, = Pi/K2. 
5 Snyder & Cox measured the growth rates of the waves, not the pressures, and the 

statement refers to the imaginary components of the pressure fluctuatlons necessary to  
induce the observed growth rates. 
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kr 

FIGURE 6. Variation of wave stress with distance from surfaco for R = 10 and (a) C = 4, 
(6) C = 10 and (c) C = l G .  Stress is made non-dimensional with units 7,(kh0)a. 
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Reynolds 1970). In  fact, use of the energy equation immediately introduces a 
visco-elastic response with a relaxation time as large as is plausible, and it seems 
unlikely that theories using linearized equations can describe the observations. 

In  the previous section, it was pointed out that two kinds of nonlinear be- 
haviour become significant for wave slopes greater than 0.1. The first arises 
when the amplitude of the Reynolds stress becomes a considerable fraction of the 
average stress, and its effect is to cause vertical displacements of streamlines 
and of the critical surface that are large compared with distance from the surface 
and the wave displacement. In  effect, the 'cats-eye' patterns of recirculating 
flow are no longer thin and they cause large displacements of the flow above them 
as if the flow had separated from the surface. The second depends on the fraction 
of the total shear stress that is transmitted by the wave-induced motion. It 
becomes significant for maximum wave slopes above 0.1, and it is particularly 
interesting that Dobson finds that the wave stress forms as much as 80 yo of the 
total stress. 

Substantial changes in the stress carried by the turbulent motion must induce 
considerable departures of the horizontally averaged velocity from the logarith- 
mic distribution. An estimate may be obtained from the turbulent energy equa- 
tion averaged over a complete wave: 

r,dO/dx-cl(pw+@iiw)~dz = e, (5.1) 

where p ,  m, v and w now mean the sum of the turbulent and wave-induced 
fluctuations. The energy dissipation is entirely dependent on the turbulent 
motion and so, making the usual assumption of similarity, 

6 = T ; / K ~ ,  (5 .2 )  

whereTO = r ,  - Twisthe part ofthetotalstress7, carriedby theturbulentmotion. 
Ignoring the diffusion term, we find that 

and (5.4) 

Inspection of the profiles in figure 6 shows that the curvature of the averaged 
velocity profiles is changed by large amounts for kh, = 0.1 and may be reversed 
for slightly larger wave slopes. 

The most straightforward way of extending the calculations to waves of finite 
amplitude is to follow Stuart (1958) and to suppose that the pattern of the 
velocity variations remains the same, but to use the wave stresses to determine 
a modified profile of horizontally averaged velocity. It is possible that a calcula- 
tion similar to that described but with the modified velocity and stress distribu- 
tions would lead to larger quadrature components of the pressure. 

I should like to thank Prof. M.S.Longuet-Higgins for assistance and pro- 
pulsion. 
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